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Abstract

Accurately predicting soil moisture patterns in the landscape is a persistent challenge.
In humid regions, topographic wetness indices (TWI) are widely used to approximate
relative soil moisture patterns. However, there are many ways to calculate TWIs and
very few field studies have evaluated the different approaches in the US. We calcu-5

lated TWIs using over 400 unique formulations that considered different: Digital Ele-
vation Model (DEM) resolution (cell size), vertical precision of DEM, flow direction and
slope algorithms, smoothing via low-pass filtering, and the inclusion of relevant soil
properties. We correlated each TWI with observed patterns of soil moisture at five agri-
cultural fields in central NY, USA; each field was visited 5–8 times between August and10

November 2012. Using a mixed effects modeling approach, we were able to identify op-
timal TWI formulations that may provide guidance for practitioners and future studies.
Overall, TWIs were moderately well correlated with observed soil moisture patterns; in
the best case the relationship between TWI and soil moisture had an average R2 and
Spearman correlation value of 0.61 and 0.78, respectively. In all cases, fine-scale (3 m)15

LiDAR-derived DEMs worked better than USGS 10 m DEMs and, in general, including
soil properties improved the correlations.

1 Introduction

Soil moisture is a key variable controlling a host of important hydrological and biogeo-
chemical processes and, thus, imposes a considerable ecohydrological fingerprint on20

the landscape. For instance, patterns of soil moisture correlate well with the spatial
distribution of: storm runoff, soil properties, nutrient cycling and species composition
and richness of plants and wildlife. Many of these processes and attributes have im-
plications for land management, especially in agricultural landscapes where activities
to maximize agricultural production should be balanced with decisions that will mit-25

igate nonpoint-source (NPS) pollution. Over the years, numerous researchers have
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proposed techniques to better describe and predict the spatial distribution of soil water
(e.g., Zhao et al., 1980; Jackson, 1993; Larson et al., 2008; Mallick et al., 2009; Sayde
et al., 2010). Perhaps the two most common approaches involve: (i) often complex, dis-
tributed watershed models that numerically simulate the physical processes governing
soil water dynamics or (ii) more simple terrain-based indices based on topography and5

sometimes soil properties.
The detailed numerical approach is typically incorporated into distributed hydrologic

modeling frameworks and has been shown to provide reasonable simulations of soil
moisture patterns (Frankenberger et al., 1999; Motovilov et al., 1999; Mehta et al.,
2004; Cuo et al., 2006). However, such models often require extensive data input and10

calibration, are generally prohibitively complex for conservation planners to use (Lane
et al., 2006; White et al., 2010) and frequently suffer from equifinality issues (Beven,
2006).

Terrain indices offer a simpler alternative that, due to their parsimonious formulation
and moderate parameterization requirements, can be efficiently applied at larger spatial15

scales while maintaining a relatively fine spatial resolution. Such indices are typically
applied via their cumulative distribution functions, which afford the estimation of total
contributing area, as well as the spatial distribution of saturation deficit (or soil moisture)
(Western et al., 1999). This facilitates both continuous- and event-based hydrologic
predictions as well as targeted environmental management decisions. Although terrain20

indices can include primary terrain attributes such as curvature, slope or aspect; here
we focus on so-called compound terrain derivatives that synthesize several primary
indices as they are generally better correlated with observed soil moisture patterns
(Moore et al., 1988, 1991; Western et al., 1999).

The most well-known and widely applied compound terrain derivative in hydrology25

and ecology is the topographic wetness index (TWI) originally proposed by Beven and
Kirby (1979). Computed as ln(α/ tanβ), where α is the upslope contributing area per
unit contour length and tanβ is the local slope, the index provides a relative, not abso-
lute, measure of the moisture status of a particular area or pixel. Since its introduction,
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the TWI concept has been integrated into many popular hydrologic models (e.g., TOP-
MODEL, Beven and Kirby, 1979; VSLF, Schneiderman et al., 2007; SWAT-VSA, Easton
et al., 2008) and pollution risk indices (Agnew et al., 2006; Reaney et al., 2011; Mar-
jerison et al., 2011; Buchanan et al., 2013). Despite its wide application, large-scale
corroboration of TWI-based predictions of landscape-scale soil moisture patterns using5

actual field observations are the exception rather than the rule. Indeed, most previous
empirical validation efforts have focused on collecting high density field observations
over very small spatial scales – typically individual hillslopes, fields or plots. Interest-
ingly, these studies have found a wide variety of correlation strengths – with R2 values
ranging from 0–0.89 (Burt and Butcher, 1985; Moore et al., 1988; Ladson and Moore,10

1992; Jordan, 1994; Schmidt and Persson, 2003; Western et al., 2004; Tague et al.,
2010), and Spearman correlation coefficients between −0.13 and 0.65 (Nyberg, 1996;
Hellstrand, 2012). Though some of this variability is undoubtedly attributable to differ-
ences in the physiography, geology, climate, and vegetation of the respective study
areas, the fundamental reasons for these discrepancies are generally unresolved.15

In this study we are focusing on agricultural landscapes in the Northeastern US,
where several researchers have concluded that variable source area (VSA) plays
a central role in agricultural NPS pollution (e.g., Rossing and Walter, 1995; Franken-
berger, 1996; Gburek and Sharpley, 1998; Frankenberger et al., 1999; Walter et al.,
2000, 2001; Gburek et al., 2002; Czymmek et al., 2003; Agnew et al., 2006; Qiu et al.,20

2007; Qiu, 2010; Margerison et al., 2011), which is the leading source of regional fresh-
water impairment (USEPA, 2009). Risks of VSA storm runoff generation are closely
correlated with soil moisture (or soil moisture deficit) (e.g., Walter et al., 2000; Agnew
et al., 2006; Lyon et al., 2006a, b; Shaw and Walter, 2009; Cheng et al., 2013). There-
fore, identifying effective methods for predicting patterns of soil moisture is important25

for developing strategies that incorporate VSA hydrology into NPS agricultural pollu-
tion mitigation strategies. TWIs are a potentially useful tool for doing this, but it is not
clear from previous studies how best to calculate it or which data should be used. Until
recently, the latter issue was essentially moot because there were few options.
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In recent years, advances in geographic information systems (GIS) and an increase
in the availability of high resolution light detection and ranging (LiDAR) data have re-
sulted in detailed and potentially more realistic representations of surface topography,
which is the primary data used to calculate a TWI. To some extent, discrepancies in
TWI-soil moisture correlations of the previously mentioned studies may be due to vari-5

ations in the accuracy of the underlying DEM data. Only a few studies have specifically
examined the advantages of LiDAR-derived TWIs relative to other less precise DEM
sources, such as the standard USGS 10 m DEMs (e.g., Tenenbaum et al., 2006; Mur-
phy and Ogilvie, 2009).

In addition to vertical DEM precision and accuracy, researchers have demonstrated10

that the TWI is sensitive to many other factors including: DEM cell size, flow direction
algorithm, slope algorithm and the inclusion of relevant soil properties. For example,
in two boreal forest sites in Sweden, Sørensen et al. (2006) demonstrated that cor-
relations between the TWI and soil moisture, groundwater depth, soil pH and plant
species richness varied with the choice of slope and contributing area algorithm. Sim-15

ilarly, Güntner et al. (2004) found that the relationship between TWIs and mapped
areas of saturation in two catchments in southwestern Germany were dependent on
how slope, contributing area, soil properties and climate were incorporated into the
TWI. Remarkably, despite the clear sensitivity of the TWI to these factors, no study has
conducted a comprehensive and systematic evaluation in the US.20

By correlating TWI maps with observed patterns of soil moisture at numerous agricul-
tural fields in central NY, this study addresses three key research questions: (i) does the
TWI provide reasonable estimates of soil water distribution in Northeast US agricultural
landscapes, (ii) does that relationship hold across multiple field sites that possess mod-
erately different topographic, land management and soils characteristics and (iii) given25

the myriad ways of calculating the input variables of the TWI (i.e., slope, contributing
area, etc.), is there an optimal TWI formulation?
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2 Methods

2.1 Study area

Soil moisture measurements were made at five agricultural field sites located in four
different catchments in south-central New York, USA (Fig. 1). The sites are character-
ized by moderate slopes (4.8–6.6 %) and agricultural land uses (i.e., typically soybean,5

grass, corn, and fallow; Table 1). Soil types across the field sites were predominantly
channery silt loams derived from siltstone, sandstone, shale, and limestone (i.e., Lan-
ford, Eria and Erie-Ellery channery silt loams) and underlain by a shallow frangipan
restrictive layer (average depth ∼ 0.4 m). Due to the low permeability of the shallow
restrictive layer, soil moisture in the upper soil layer is a key variable influencing runoff10

generation, which is primarily a saturation-excess process in the study region (Walter
et al., 2003; Easton et al., 2008).

2.2 Field data

Volumetric soil moisture readings in the upper 12 cm were collected with Time Domain
Reflectometry (TDR) probes across a gradient of TWI values at each site. A minimum15

of three TDR readings were recorded at each sampling point and used to calculate
the average point VWC for each date. All sampling points were located with GPS units
(horizontal accuracy ∼ 3 m). Field sites were sampled from mid-August 2012 to the
end of November 2012 (Table 2). For storms greater than 6 mm, a minimum of 24 h
elapsed before collecting TDR measurements in order to allow for gravity-driven redis-20

tribution of soil moisture. All VWC measurements were normalized by the average field
soil moisture for each sampling date. Consequently, all soil moisture values represent
a relative measure of wetness.

Gravimetric soil moisture measurements, made on soil cores taken from each site
were used to calibrate the TDR probe. The soil cores were collected across a range25

of wetness conditions. A calibration curve, which related TDR period and gravimetric
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measurements, was then constructed to correct VWC readings derived from the TDR
probe (R2 = 0.82).

2.3 TWI modifications and analysis methods

We examined how the strength of the correlations between soil moisture and TWI were
influenced by different combinations of the following factors: (i) inclusion of soil prop-5

erties, (ii) vertical accuracy of the DEM source data, (iii) cell size of the base-DEM,
(iv) slope algorithm, (v) contributing area algorithm and (vi) smoothing of the final TWI.
All TWI values were extracted from the sample point coordinate data using bilinear in-
terpolation from the four nearest grid cells. Bilinear interpolation provided a more repre-
sentative estimate of the point TWI value given the 3 m horizontal accuracy of our GPS10

units. The overall analyses resulted in 432 unique TWI formulations. The various pa-
rameter combinations used to construct the TWIs are discussed more explicitly below.
All terrain analyses were conducted with SAGA-GIS and automated via the RSAGA
package in R (Brenning, 2007).

2.3.1 TWI form: STI vs. TI15

Two different methods for calculating the TWI were compared: the original topographic
index (TI) proposed by Beven and Kirkby (1979) and the soil-topographic wetness in-
dex (STI), which extends the purely topography-based TWI by accounting for spatial
variation in hydrologically relevant soil properties (Beven, 1986). The standard TI takes
the form:20

TI = ln
(

α
tan(β)

)
(1)
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where α is the upslope contributing area per unit contour length and β is the slope
(mm−1). The STI is expressed as (Walter et al., 2002; Lyon et al., 2004):

STI = ln
(

α
T · tan(β)

)
(2)

where T is the soil transmissivity (m2 d−1) computed as the product of the average
saturated hydraulic conductivity (mday−1) and the depth to restrictive layer (m); note:5

this is somewhat different from the STI originally proposed by Beven (1986), which as-
sumed an exponential decrease in hydraulic conductivity with depth and the saturated
hydraulic conductivity at the bottom of the soil is approximately zero. However, this way
of calculating the STI has been used in several regional modeling studies and been
shown to work reasonably well in the Northeast US (e.g., Agnew et al., 2006; Lyon10

et al., 2006a, b; Schneiderman et al., 2007; Easton et al., 2008). Soil properties were
derived from the USDA-NRCS Soil Survey Geographic (SSURGO) database using the
Soil Data Viewer application (USDA-NRCS, 2009).

2.3.2 Source data: USGS vs. LIDAR

TWIs were calculated based on publicly available United States Geological Survey15

(USGS) DEMs as well as high resolution LiDAR data. The USGS DEMs were ob-
tained from the National Elevation Dataset (http://viewer.nationalmap.gov/viewer/) at
a 1/3 arc-second (∼ 10 m) resolution. Although the National Elevation Dataset does in-
clude 1/9 arc-second (∼ 3 m) DEMs, they were not available for our study region. The
USGS DEMs, typically derived from any of four production methods (i.e., electronic im-20

age correlation, manual profiling on stereoplotters, contour-to-grid interpolation or an
improved contour-to-grid interpolation known as “LineTrace+”), possess considerably
less vertical accuracy than LiDAR DEMs (root mean square error is typically 2.44 m
for USGS (USGS, 2013) vs. 0.15 m for our LiDAR dataset). Although it is possible to
resample a 10 m USGS DEM to higher cell resolutions, we felt this was not justified as25
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the resulting grid resolution would exceed the scale at which the original source data
were derived – thereby implying an erroneous degree of accuracy in the underlying
elevation data. Consequently, all USGS DEMs were evaluated at the original 10 m res-
olution. The LiDAR DEMs were generated at 3 m and 10 m resolutions from point cloud
data of filtered ground shots (average point spacing ∼ 0.67 m) via natural neighbor5

interpolation.

2.3.3 Cell size: 3 m vs. 10 m

Previous studies have demonstrated that terrain derivatives (e.g., slope and contribut-
ing area) and, thus, TWIs can be substantially affected by the cell resolution of the
base DEM (Hasan et al., 2012; Sørensen and Seibert, 2007). Here we investigate10

two commonly used DEM resolutions, which are particularly relevant for high resolu-
tion distributed hydrologic and water quality modeling: 3 m vs. 10 m. The LiDAR data
were interpolated to both 10 m and 3 m DEMs. The overall parameter set for this group
includes: (i) 10 m LiDAR TWIs and (ii) 3 m LiDAR TWIs.

2.3.4 Slope calculation: local slope vs. downslope index15

Four methods for calculating slope were compared: (i) maximum triangle slope (MTS;
Tarboton, 1997), (ii) least squares fitted plane (LSFP; Horn, 1981), (iii) 2nd degree
polynomial (SDP; Zevenbergen and Thorne, 1987), and (iv) the downslope index (DSI;
Hjerdt et al., 2004). In contrast to MTS, LSFP and SDP, which are considered “local
slope” algorithms, because they only consider the cell of interest and its neighbors, DSI20

is defined as the slope to the closest point that is d meters below the cell of interest.
The DSI provides a potential improvement to the local-slope methods because it can
account for downslope controls on local soil moisture conditions and thereby relaxes
the assumption of parallelism between surface topography and groundwater tables,
i.e., the kinematic approximation of water table slope. Importantly, the DSI is controlled25

by the distance parameter (d) that affects the degree of deviation of the hydraulic and
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surface gradients (i.e., large values of d , result in larger downslope influences). For
this study, we tested three different values of d : (i) 2 m, (ii) 5 m and (iii) 10 m. Thus,
the parameter set for the slope calculation includes a total of six slope types: (i) MTS,
(ii) LSFP, (iii) SDP, (iv) DSI with d = 2 m, (v) downslope with d = 5 m and (vi) downs-
lope with d = 10 m. All slopes were computed as straight-line distances as opposed to5

flowpath distances.

2.3.5 Flow accumulation algorithm

Perhaps the parameter that influences TWI values the most is the contributing area
(a) which can be calculated with a variety of different algorithms. Here, we compare
six different flow direction algorithms, which, broadly speaking, can be divided into10

two main categories: single flow direction (SFD) and multiple flow direction (MFD). The
principal difference between the single vs. multiple flow direction groups lies in how flow
is apportioned to downslope cells. As the name implies, single flow direction algorithms
assign all flow to a single downslope cell, whereas MFD algorithms allows flow to be
split among multiple cells.15

By far, the most commonly used algorithm currently is the D8 form proposed by
O’Callaghan and Mark (1984) and coded as the default routine into the hydrologic
toolsets of most popular GIS platforms (e.g., ArcGIS, MapWindow, QGIS). The D8
algorithm is simple and computationally efficient. D8 apportions all flow into a single
downslope cell determined by the steepest gradient among eight cardinal and intercar-20

dinal directions. This may oversimplify actual flow paths, especially in convex terrain
and flow-divergence areas, which may lead to incorrect representations of contributing
area and flow pathways (overly straight and parallel). D8 is also very sensitive to mi-
nor elevation differences in adjacent cells and this can be exacerbated at high DEM
resolutions (Park et al., 2009; Erskine et al., 2006).25

The second SFD algorithm tested in this study is the randomized single-flow direc-
tion method (Rho8) proposed by Fairfield and Leymarie (1991). The method results
in stochastic flowpath delineations through the incorporation of a uniformly distributed
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random variable into the calculation of slope gradient. This alleviates the overly linear
and parallel flow line issues of D8, but flow is still apportioned into a single downslope
cell. Moreover, the results are not reproducible and not always physically-based due to
the random factor.

The multiple flow direction (MD) approach of Freeman (1991) addresses the short-5

comings of SFD approaches by allowing for flow divergence into adjacent downslope
cells as a proportion of the slope gradient. The MD method results in smoother, seem-
ingly more physically realistic flow pathways and flow accumulation patterns relative to
SFD algorithms – especially in steeper terrain. The biggest drawback is that in valley
bottoms and other low-lying areas, flow dispersion can be unrealistic (Costa-Cabral10

and Burges, 1994; Tarboton, 1997).
The D∞ method of Tarboton (1997) helps reduce the excessive flow dispersion is-

sues of the MD by calculating slope as a function of eight triangular facets, where flow
is apportioned to the two downslope cells nearest to the steepest direction weighted
as a function of their distance from this direction. Although D∞ does afford multi-cell15

flow divergence, its restriction to only two downslope cells may become a limitation on
convex hillslopes where dispersion is unrealistically confined.

The braunschweiger relief model (BR, Bauer et al., 1985) also allows flow disper-
sion to multiple, adjacent downslope cells, but restricts dispersion to only three cells –
thereby limiting the degree of divergence, but allowing more than D∞. The proportion20

of flow allotted to each cell is determined by iteratively categorizing the slope direction
as defined by an upslope polygon. The upslope polygon is solved for until the source
cell is reached. Flow direction is then computed as a function of slope gradient and
aspect of the four neighboring pixels (Park et al., 2009).

The final flow direction algorithm we evaluate is multiple triangular flow direction25

(MD∞). First proposed by Seibert and McGlynn (2007), MD∞ extends the D∞ ap-
proach by allowing flow dispersion into more than two downslope cells. MD∞ attempts
to strike a balance between the potentially excessive flow dispersion of MD and the
restrictive flow dispersion of D∞ – especially on convex slopes.
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The parameter set for flow accumulation calculation includes six flow direction algo-
rithms: (i) D8, (ii) Rho8, (iii) BR, (iv) D∞, (v) MD and (vi) MD∞.

2.3.6 Smoothing: filtered vs. unfiltered

High resolution DEMs tend to result in high local variations in TWI values, which may
translate to unrealistically irregular predictions of soil moisture and water table depths5

(Hjerdt et al., 2004; Lanni et al., 2011). Low-pass digital filtering helps to smooth out
anomalous local variations by averaging across a user-defined search window. Also,
by averaging across non-local grid cells, filtering can potentially incorporate downslope
influences, as well as “smear” the results of SFD algorithms, which may result in an
intermediate level of flow dispersion. For this study, we applied a 3×3 pixel low-pass10

mean filter to the TWI maps. Thus, the parameter set for this section include: (i) filtered
TWIs and (ii) unfiltered TWIs.

2.4 TWI performance criteria and statistical methods

A mixed effects modeling analysis was used to identify the optimal TWI formulation
for the USGS and LiDAR datasets. Subsequently, the optimal models were validated15

against our observed data by calculating Spearman rank correlation coefficients (rs)
and coefficients of determination (R2). Both sets of analyses are discussed in detail
below.

2.4.1 Mixed effects modeling

To control for the lack of independence among sampling points and field sites (i.e., re-20

peated measures) we applied a linear mixed effect model structure with sampling date
and point I.D. as random effects. Fixed effects included the main effect, TWI form, as
well as field site and sampling date. The resulting optimal model was validated to verify
that the underlying statistical assumptions were not violated; homogeneity of variance
was evaluated by plotting residual vs. fitted values, independence was examined by25
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plotting residuals vs. each explanatory variable, and normality of residuals was evalu-
ated by plotting theoretical quantiles vs. standardized residuals (Q–Q plots). We also
evaluated the degree of spatial autocorrelation amongst soil moisture measurements
via variogram analysis and no consistent trends were observed (data not shown). We
attribute the lack of significant spatial autocorrelation to the fact that our field sampling5

protocol was conducted using a cluster approach as opposed to linear transects or
equal-interval sampling grids.

The relative performance of the 432 different TWIs were evaluated by comparing
Akaike Information Criterion (AIC) values derived from the mixed effects models. The
AIC is a goodness-fit-index that provides a measure of the relative as opposed to abso-10

lute fit. Thus, the AIC is intended to facilitate model comparisons from the same dataset
and aids in the selection of optimal models, with lower AIC values indicating a better
fitting model (Akaike, 1973, 1974).

The relative performance of the models in the six different TWI parameter-groups
listed above (i.e., source data, TI form, cell size, slope algorithm, flow direction algo-15

rithm and smoothing) were evaluated by two methods: (i) comparing the mean, median
and overall probability distribution of AIC values via violin plots (see Hintze and Nelson,
1998 for a detailed description of these plots) and (ii) by pairwise comparison of TWIs
that share the exact same parameter values in all respects except for, of course, the
particular TWI parameter in question (see Table 3 for an example).20

The following generally accepted guidelines when comparing AICs were adopted for
this study (Burnham and Anderson, 2002): models with AIC values within 2 of each
other were not considered significantly different; AIC values within only 3–7 units of
each other were considered moderately different; AIC values> 10 were considered
significantly different from each other.25

To facilitate the identification of the overall best fitting TWI from the entire set of mod-
els, we also calculated delta AICs (∆AIC), Akaike weights (AICwi ) and evidence ratios
(E-ratio). The ∆AIC is simply the difference between the i-th model and the optimal
model, calculated as follows:
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∆AIC = AICi −AICopt (3)

where AICi is the AIC value for the i th model and AICopt is the AIC value of the best
model (minimum AIC value). Akaike weights provide an effective way to interpret the
∆AIC values by comparing the ratio of each model to the best model relative to the
entire set of candidate models as follows:5

AICwi =
exp

(
−∆AICi

2

)
∑K

k=1 exp
(
−∆AICk

2

) (4)

given a set of K models being evaluated. Evidence ratios provide a more concise way
to quantify the weight of evidence in support of one model over another and are cal-
culated simply as the ratio of Akaike weights (AICwopt/AICwj ), where AICwopt is the
estimated best model in the dataset, and j indexes the remaining models in the set. An10

evidence ratio less than or equal to three relative to another model suggests equiva-
lence between the models (Burnham and Anderson, 2002). All statistical analyses were
conducted using the “lme4” package within the R statistical programming environment
(Bates et al., 2011; R Core Team, 2011).

2.4.2 Model validation15

To validate the optimal models identified via the AIC analysis, we calculated rs and R2

values, which were averaged across field sites and sampling dates as a means for con-
trolling for the lack of independence among soil moisture measurements (albeit more
crudely than the mixed effects models). The average rs and R2 values not only help to
evaluate the accuracy of the optimal TWIs, but also facilitate inter-study comparisons20

as most previous research assessed the strength of correlation between soil moisture
patterns (either observed or model generated) and various TWI formulations via these
two metrics.
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3 Results and discussion

3.1 Source data: USGS vs. LIDAR

A comparison of the means and overall distributions of AIC values reveals that LIDAR-
based TWIs consistently provide a better fit to the patterns of observed soil moisture
than USGS-based TWIs across the full range of parameter combinations (Fig. 2). Mean5

AIC values differ by more than 170, with no overlap in distribution. The AIC distribution
of the LiDAR dataset is substantially greater than the USGS indicating that the different
parameter combinations had a greater influence on the performance of LiDAR TWIs.

The majority of other researchers have evaluated the effect of vertical DEM accu-
racy on terrain indices by either: (i) comparing TWIs with different vertical informa-10

tion contents to each other via spatial statistics (distribution functions, spatial pattern
analysis; Sørensen and Seibert, 2007; Vaze et al., 2010) or (ii) by calculating topo-
graphic attributes from DEMs of varying information content and evaluating their effect
on hydrologic and water quality model predictions at the basin outlet (Zhang and Mont-
gomery, 1994; Grabs et al., 2009; Kenward et al., 2000). In general, these studies15

have found that higher quality vertical information results in appreciable improvements
in the representation of topographic surfaces, more accurate delineations of hydrolog-
ically relevant parameters and more appropriate model outputs especially regarding
spatially distributed information. To our knowledge, only two other studies, Tenenbaum
et al. (2006) and Murphy and Ogilvie (2009), have used field observations to examine20

the potential benefits of LiDAR-based DEMs on TWI-soil moisture relationships. Mur-
phy and Ogilvie (2009) compared field-mapped saturated areas in a 193 ha watershed
in Canada with both a 1 m LiDAR-TWI and a 10 m photogrammatic-TWI and demon-
strated that the LiDAR-TWI yielded better predictions of flow connectivity and overall
index distributions. Tenenbaum et al. (2006), on the other hand found more equivocal25

results. Specifically, they showed that LiDAR-TWIs provided improved predictions of
near-surface soil moisture in an urbanizing environment where refined flowpath delin-
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eations were necessary, but not in a forested catchment where a coarser, photogram-
matic DEM better captured the more generalized soil moisture patterns.

Despite some variability in results, the AIC values in this study indicate that the higher
data storage costs and lower computation efficiency associated with higher resolution
LiDAR data is justified by the substantial improvement in predictive ability. However, we5

recognize that such datasets are not always readily obtainable. Consequently, here-
after, we will analyze the LiDAR and USGS datasets separately to facilitate identifica-
tion of the optimal TWI for both DEM source types.

3.2 TWI form: STI vs. TI

The distribution, mean and median of TWI formulations that incorporated SSURGO10

soils data correlated with soil moisture patterns better than those that did not include
both the LiDAR and USGS datasets (Fig. 3). The average pairwise difference in AIC
values was 31 and 23 for the LiDAR and USGS datasets, respectively. This suggests
substantial improvement in predictive accuracy due to the inclusion of soils data regard-
less of DEM source. The pairwise comparison found only four moderate (∆AIC < 10)15

exceptions to this rule and only in the LiDAR dataset (Table 4). In other words, the
STI fit the empirical dataset better than the TI in 428 out of 432 cases. Also, it should
be noted that these four exceptions were well outside the lower quartile range of the
STI group and so were not among the better forms of STI. Furthermore, all exceptions
used a 10 m cell size and BR flow accumulation, which as we show later, performed20

relatively poorly and could therefore, be a result of a chance combination of factors.
Few studies have directly examined the benefits of including soils data in the TWI for-

mulation via comparison with empirical data. Güntner et al. (2004) compared the ability
of STIs and TIs to predict the aerial extent of saturation as defined by pedological and
geobotanical mapping criteria. The incorporation of soils data was found to improve25

index performance only when transmissivity values were calibrated. However, the au-
thors acknowledge that the soils data used in their study were only “rough estimates”
and thus, their results are not necessarily comparable with ours.

14056

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14041–14093, 2013

Evaluating
topographic wetness

indices across
central New York

B. P. Buchanan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Overall, our results suggest that despite the fact that SSURGO soils data are gen-
erated at coarse scales, they provide useful, hydrologically relevant information that
helps to improve LiDAR- and USGS-based terrain indices at the scale of individual
farm fields.

3.3 Cell size: 3 m vs. 10 m5

The means and overall distributions of AIC values suggest that higher resolution 3 m
TWIs provide a far better fit to observed patterns of soil moisture relative to 10 m
LiDAR-based TWIs (Fig. 4). Additionally, the 3 m TWIs outperformed the 10 m across
all pairwise comparisons, with an average pairwise AIC difference of over 55. The bet-
ter correlations to soil moisture with the 3 m TWIs indicate that the added data stor-10

age and associated computation costs of the 3 m dataset may be warranted. This is
somewhat in contrast with the findings of Zhang and Montgomery (1994) who argue
that terrain derivatives computed from 10 m DEMs provide a reasonable compromise
between complexity and accuracy. However, their study was conducted almost two
decades ago, when data storage limitations and processing rates were more of a con-15

cern. Further, their study evaluated the appropriateness of DEM resolution via com-
parisons of frequency distributions and TOPMODEL predictions, but no field data were
used. Sørensen and Seibert (2007), on the other hand, found substantial differences
between 5 m and 10 m TWI grids – though they do not necessarily recommend one
over the other and instead point out that the appropriate resolution may be dependent20

on the particular terrain feature or hydrologic characteristic in question.
We attribute the consistently better performance of the 3 m-based TWI-values pri-

marily to more accurate and discrete delineations of flow pathways which, based on
our field observations were quite small (often on the order of 1–4 m). According to our
field observations, these micro-topographical features exert a considerable influence25

on downslope soil moisture distribution. However, these features occur at scales much
finer than 10 m-based TWIs and are therefore often not captured appropriately. Note,
however, that Wolock and Price (1994) found that groundwater table surfaces may be
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better represented by coarser DEMs as they result in smoother, more realistic predic-
tions, though it is not obvious that this is strongly comparable to soil moisture.

3.4 Slope calculation: local slope vs. downslope index

3.4.1 LiDAR

The least squares fitted plane (LSFP), maximum triangular slope (MTS) and 2nd de-5

gree polynomial (SDP) methods, as well as the downslope index with the distance
parameter set to 2 m (DSI-2m) outperformed the downslope index set to 5 and 10 m
(DSI-5m, DSI-10m, respectively) across the LiDAR dataset (including both 3 and 10 m
cell sizes; Fig. 5). Also, although the means and distributions of the best performing
slope algorithms were similar, the maximum triangular slope resulted in the best-fitting10

TWI and did moderately better than the next best method with a mean pairwise AIC
difference of 4. There were, however, 35 cases where the DSI-2m fitted the LiDAR
data better (see Buchanan, 2013 for a table of the specific TWIs) and the DSI-2m pos-
sessed a lower mean AIC value. This suggests there may be little difference between
the two methods. The generally better performance of the local slope algorithms for the15

LiDAR dataset is consistent with Günter et al. (2004) and Sørensen et al. (2006) who
found that the local slope achieved a higher correlation with observed patterns of soil
moisture, wetness degree and groundwater depth than the DSI.

3.4.2 USGS

In contrast to the LiDAR dataset, the downslope index with a d parameter set to 5 m re-20

sulted in the best-fitting USGS TWIs, while the all three local slope algorithms resulted
in the worst performing TWIs (Fig. 5). The mean pairwise difference in AIC values for
the top two groups was 9, indicating a moderate advantage to using the DSI-5m vs.
DSI-2m. Additionally, there were no exceptions to this across the pairwise comparisons.

14058

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14041–14093, 2013

Evaluating
topographic wetness

indices across
central New York

B. P. Buchanan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The likely explanation for the stronger performance of the non-local downslope index
in the USGS dataset is that USGS DEMs provide a more generalized representation
of the actual topography and therefore emphasize coarser-scale terrain characteris-
tics such as the transition from hilltop to valley bottom. Conversely, LiDAR DEMs cap-
ture more subtle micro-topographical features such as small surface depressions and5

drainages that exert a much smaller influence on upslope drainage conditions. Thus,
the DSI is likely be overly sensitive to the highly varied terrain surfaces of LiDAR DEMs
and may therefore, lead to erroneous soil moisture predictions upslope of these small
features. The DSI is probably more applicable to coarser USGS DEMs that better cap-
ture large-scale surface forms which are likely to exert an appreciable effect on upslope10

drainage. This has important implications for non-local slope algorithms – suggesting
the need for an additional parameter that adjusts for the scale of topographic features,
such that larger hillslope transitions are emphasized while very small topography is
de-emphasized.

3.5 Flow accumulation15

3.5.1 LiDAR

The mean and overall distributions of AIC values suggest that the multiple flow direction
algorithms fit patterns of observed soil moisture much better than single flow direction
when using 3 and 10 m LiDAR-derived TWIs (Fig. 6). The average AIC difference in
the SFD vs. MFD groups was roughly 27, which highlights the rather substantial ad-20

vantage of using MFD. Even so, there was very little difference in the performance level
amongst the MFD groups when using LiDAR data (i.e., the means of the top three MFD
groups were essentially equal). The only real exception was the BR algorithm of Bauer
et al. (1985), which performed considerably worse than the other MFD formulations.
The BR method results in similar index values to D∞, MD and MD∞ in upland ar-25

eas, but much lower values in drainages and low-lying areas (data not shown). These
small drainages and subtle convergent zones were important features in the sites used
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in this study. Their omission by the BR algorithm is likely the root cause of its poor
performance relative to the other MFD algorithms. Overall, the MD∞ of Seibert and
McGlynn (2007) achieved the lowest AIC value, suggesting it produced the best-fitting
model. However, the mean pairwise difference between MD∞ and the next best group
was < 2 AICs and there were over 25 pairwise exceptions (see Buchanan, 2013 for5

table of the specific TWIs).
Similar to our findings, Güntner et al. (2004), Sørensen et al. (2006), and Park

et al. (2009) showed that MFD algorithms resulted in considerably higher correlations
with observed soil moisture patterns than SFD. Nevertheless, Park et al. (2009) and
Erskine et al. (2006) showed that the relative differences between the SFD and MFD10

groups were inversely related to cell size, which indicates an interaction between our
analysis of cell size and flow contributing algorithms. In particular, Park et al. (2009)
found that beyond 20 m cell sizes the performance of single and multiple flow direction
algorithms tended to converge. To investigate this potential interaction, we plotted the
AIC distributions for each flow accumulation scheme for each cell size in the LiDAR15

dataset (Fig. 7). It is evident from Fig. 7, that the multi-flow direction algorithms pro-
vide better model fits across the range of tested cell sizes. However, the AIC difference
between the means of the SFD and MFD groups declines from 35 to 18 when going
from a 3 m to 10 m grid size, corroborating the idea that MFD performance declines in-
versely with cell size. As Erskine et al. (2006) points out, single- and multiple-direction20

algorithms are most similar in flow convergence zones (e.g., valley bottoms) and as cell
size increases, the “percentage of the total drainage area classified in the lower region
[convergent areas] increases” – yielding more and more similarity in the represented
topography with increasing cell size. Interestingly, Sørensen et al. (2006), Endreny and
Wood (2003) and Güntner et al. (2004) used raster DEMs with grid sizes greater than25

the 20 m similarity threshold identified by Park et al. (2009) and yet still found substan-
tial differences between SFD and MFD algorithms. This discrepancy may be explained
by differing vertical accuracies in the base DEMs between studies or differences in the
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topography of their unique study sites. Regardless, the lack of inter-study agreement
warrants further, more systematic investigation.

3.5.2 USGS

Similarity in the means of the single- and multiple-direction flow accumulation methods
suggests the choice of algorithms is not as consequential when using coarser USGS5

DEMs (Fig. 8). Interestingly, however, when examining the best performing TWIs from
each flow direction type, a trend appears that is the reverse of the LiDAR dataset.
Namely, that single- as opposed to multiple-direction formulations performed system-
atically better. It is important to note, however, that the average pairwise AIC difference
in the top two groups with the lowest AIC values (i.e., D8 and Rho8) was only 3.5 and,10

additionally, there were 14 minor to significant exceptions where another flow accumu-
lation algorithm outperformed the D8 in pair-wise comparisons (see Buchanan, 2013
for table of the specific TWIs).

Importantly, the SFD algorithms achieved their best fit to the empirical data only
when the TWIs were smoothed via low-pass filtering (Fig. 9). When the TWIs remained15

un-filtered, MD achieved the best AIC ranking. By smoothing the SFD-based indices,
filtering effectively introduces flow dispersion, suggesting that an intermediate level of
dispersion may be desirable when using lower resolution USGS DEMs. Indeed, numer-
ous other studies conducted using coarse elevation models, have concluded that an
intermediate approach between the SFD and MFD methods achieved the most realis-20

tic flow distribution patterns (i.e., Holmgren, 1994; Tarboton, 1997; Endreny and Wood,
2003; Güntner et al., 2004). The implications of the filtering effects are discussed in
more detail in the following section.
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3.6 Smoothing: filtered vs. unfiltered

3.6.1 LiDAR

The means and overall frequency distributions of the filtered vs. unfiltered TWIs in
the LiDAR dataset indicate little advantage to either method (Fig. 10). Even so, unfil-
tered LiDAR TWIs did achieve the lowest AIC values and the mean pairwise difference5

between the filtered and unfiltered groups was 7 suggesting a moderate benefit to un-
smoothed LiDAR-based TWIs. Although this finding is not strongly supported by our
data, it is in direct contrast to Lanni et al. (2011) who demonstrated that their dynamic
topographic index, calculated using high resolution (2 m) LiDAR DEMs, performed bet-
ter when smoothed via a 3×3 low-pass filter. The lack of agreement between our10

studies may be due to the fact that we employed clustered empirical field data whereas
Lanni et al. (2011) evaluated TWI performance via cell-by-cell comparison with a phys-
ically based Boussinesq model across a 3.2 km2 watershed. Additionally, our study
sites were characterized by relatively moderate slopes with similar mid-slope topo-
graphic positions. In contrast, Lanni et al.’s (2011) study watershed was characterized15

by varied, high relief terrain including bottom, middle and top of hillslopes. The highly
accurate terrain surfaces derived from the unfiltered LiDAR DEMs correctly captured
small-scale terrain heterogeneities in our study fields that likely played an important
role in determining the direction of runoff into neighboring cells, but may not have ex-
erted a strong upslope influence. The hillslope-scale features examined in Lanni et al.’s20

(2011) study, which emphasize coarser-scale soil moisture dynamics, were likely bet-
ter represented by TWIs that incorporated non-local topographic information (i.e. are
filtered).

3.6.2 USGS

Unlike the LiDAR dataset, filtering the USGS-TWIs resulted in a substantial improve-25

ment in model fit (Fig. 10). The average pairwise difference in AIC values between
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filtered vs. unfiltered TWIs was over 17, suggesting substantial improvement in predic-
tive accuracy due to the smoothing of predicted wetness surfaces. Filtering the USGS
TWIs likely improves their predictive ability for the same reasons that the downslope
index did – because it helps to account for downslope controls on local drainage sta-
tus which are more appropriately captured by coarser DEMs. In other words, filtering5

averages out the effects of local anomalies and also incorporates a measure of non-
local topographic effects, which results in a smoother, more contiguous, more realistic
surface at larger hillslope scales.

3.7 Best overall model

The top ten best performing TWI formulations for both the LIDAR and USGS TWIs10

are presented in Table 8. Model 1a possessed the lowest AIC value and the highest
AIC weight (5917 and 0.39, respectively), indicating that it was the best model among
the set of tested models in the LiDAR Dataset (Table 8). However, models 2a–4a all
possess evidence ratios of three or less which provides little evidence that model 1a
is in fact notably better than models 2a–4a. From this we can conclude that when15

dealing with LiDAR data, the best TWI formulation will: (i) incorporate soils data, (ii) be
interpolated to fine grid resolutions, less than 10 m, (iii) utilize a local slope algorithm
such as LSFP, SDP or MTS as opposed to the DSI, (iv) employ a multiple flow direction
algorithm such as MD∞ or D∞ and (v) remain unfiltered.

When dealing with coarser USGS-based TWIs, our results suggest that Models 1b20

and 2b are roughly equal in terms of their fit to observed moisture patterns (i.e., evi-
dence ratios≤ 3) (Table 8). Thus, the optimal parameter set when using USGS TWIs
will: (i) incorporate soils data, (ii) utilize a slope algorithm that accounts for downslope
controls such as DSI set to an intermediate d parameter (e.g., 5 m), (iii) employ a single
flow direction algorithm and (iv) importantly, be smoothed via low-pass filtering.25

For comparative purposes we have also included a plot of the best performing Li-
DAR and USGS TWIs vs. observed soil moisture for each sample date, along with the
associated R2 value (Figs. 11 and 12, respectively). The mean R2 across all sampling

14063

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/14041/2013/hessd-10-14041-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 14041–14093, 2013

Evaluating
topographic wetness

indices across
central New York

B. P. Buchanan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

dates for the LiDAR dataset was roughly 0.61, i.e., approximately 61 % of the variation
in soil moisture was explained by this TWI. However, the best-performing USGS TWI
only explained roughly 32 % of the soil moisture variation on average. Higher R2 values
for both the USGS and LiDAR datasets were achieved when the soil moisture readings
were binned, according to their TWI values, into integer categories or wetness classes5

similar to Schneiderman et al. (2007) and Easton et al. (2008). Binning the TDR read-
ings has the effect of averaging over larger spatial scales, which helps to reduce the
effect of anomalous TDR readings, thus improving soil moisture-TWI correlations. For
example, by binning the TDR readings into TWI-integer classes, the mean R2 values
increased substantially from 0.61 to 0.79 for the LiDAR TWIs and from 0.32 to 0.72 for10

the USGS TWIs.
The majority of studies conducted prior to the year 2000 found coefficients of de-

termination that seldom exceeded 0.5, and typically ranged from 0–0.4 (e.g., Burt and
Butcher, 1985; Moore et al., 1988; Ladson and Moore, 1992; Jordan, 1994; Western
et al., 1999, 2004; Tague et al., 2010). Notably, much like the USGS DEMs used in this15

research, these older studies generally used DEMs derived from lower-quality eleva-
tion data. The fact that the range of R2 values from our USGS TWI is consistent with
those of the older studies implies that elevation accuracy may have played a strong
role in limiting predictive ability.

Taking advantage of the availability of higher quality elevation data, several more20

recent studies have reported improved soil moisture-TWI correlations. For instance,
using a 5 m LiDAR-derived TWI, Tague et al. (2010) demonstrated an average R2 value
of 0.74 across two experimental plots in MD, USA. Likewise, Tenenbaum et al. (2006),
Sulebak et al. (2000), and Schmidt and Persson (2003) used high resolution TWIs
(< 10 m) derived from high resolution elevation source data (not necessarily LiDAR),25

and found R2 values ranging from 0.51 to 0.87.
The average Spearman coefficients corroborate the R2 and AIC analyses (Fig. 13a).

The upper range of Spearman values observed in this study (i.e., 0.7–0.78) were com-
parable with those of Sørensen et al. (2006), but are considerably higher than Tromp-
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van Meerveld and McDonnell (2006) and Cantón et al. (2004). Note, both the Spear-
man vs. AIC analyses generally indicated the similar performance for the TWIs, e.g.,
high Spearman coefficients were strongly correlated with low AICs (Fig. 13b). Accor-
dance of Spearman and AIC values lends credence to our findings and statistical meth-
ods and helps to facilitate comparisons with other studies that employed the Spearman5

metric.
Despite the fact that we were able to demonstrate good correlations between LiDAR-

derived TWIs and observed soil water patterns, which were consistent with those of
other more recent research, on average 40 % of the variation remained unexplained.
This is, perhaps, unsurprising considering that these simple indices are overlooking10

several other well-proven factors that influence the spatial distribution of soil water. The
effect of ET on soil moisture is particularly influential and varies based on vegetation
type, aspect, and solar radiation; to name a few factors that are not included in the
TWI indices. Another factor that may account for the discrepancies between TWIs and
measured soil moisture is the inherently different scales between the base data used15

to generate TWIs and the scale at which the TDR probe measures soil moisture, even
with multiple measurements to characterize a sampling point.

Moreover, soil moisture dynamics are known to change not only through space, but
also through time. Nevertheless, a core assumption of the TWIs examined here, and
in most other research, is that of steady-state, wherein time-dependent storage terms20

are neglected. As pointed out by Barling et al. (1994), rainstorms will rarely be of suffi-
cient depth or duration to achieve steady-state subsurface flow. To address this issue,
several researchers have explored more dynamic topographic indices which relax the
steady-state assumption (e.g., Barling et al., 1994; Wilson et al., 2005). Although these
may offer some improvements in terms of physical realism over the standard TWI, the25

dynamic and quasi-dynamic indices have yet to be widely adopted or well-tested be-
yond their original papers. Additionally, these more advanced conceptualizations re-
quire considerably more input data and are sufficiently complex to start blurring the
line between what constitutes a distributed hydrological model and a wetness index.
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The simplicity of the standard TWI is really at the heart of its popularity and yet this
simplicity also leads to variable results when trying to represent dynamic processes
via a static index.

4 Conclusions

We identified some notable differences among different formulations of TWIs and their5

correlation to spatial patterns of soil moisture in agricultural settings in central, NY. Most
importantly, we found that some TWI-forms correlate relatively well with soil moisture.
Our principal findings include:

– LiDAR-derived TWIs achieved good correlations with observed patterns of soil
moisture in fields in northeastern US.10

– LiDAR-derived TWIs achieved appreciably better correlations than USGS-based
TWIs. Thus, when given a choice between using LiDAR or USGS DEMs for con-
structing TWI maps, we recommend the former.

– TWIs that include soil transmissivity (STI) work better than the simpler TI (we
used the SSURGO dataset and calculated transmissivity as the product of the15

soil depth to a restrictive layer and average saturated hydraulic conductivity of
that soil).

– The optimal formulation for a LiDAR TWI will:

– Use a fine resolution DEM (we used 3 m).

– Use the Maximum Triangular Slope algorithm to compute slope (Tarboton,20

1997).

– Use the Multiple Triangular Flow Direction algorithm (Seibert and McGlynn,
2007) to compute flow accumulation values.
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– Not apply a low-pass smoothing filter (we used a 3×3 low-pass filter).

– The optimal formulation for a USGS TWI will:

– Use the Downslope Index (Hjerdt et al., 2004) with a d parameter set to 5 m
to compute slope (Tarboton, 1997).

– Use the D8 Flow Direction algorithm (O’Callaghan and Mark, 1984) to com-5

pute flow accumulation values.

– Smooth via a 3×3 low-pass filter.

Despite the encouraging LiDAR-based TWI-soil moisture correlations observed in
this study, on average, roughly 40 % of the variation in soil moisture remained unex-
plained by the TWI. This is perhaps unsurprising considering we were attempting to10

describe an inherently dynamic process with a static index. Future studies may want
to evaluate the cost-effectiveness (in terms of complexity and computational efficiency)
of other TWI formulations, which either relax steady-state assumptions (e.g., Lanni
et al., 2011), incorporate a measure of spatio-temporal variations in evapotranspira-
tion (Ludwig and Mauser, 2000) or account for other terrain attributes such as aspect15

or time-variable channel initiation thresholds (Xiande et al., 2002; Gomez-Plaze et al.,
2001; Kim and Lee, 2004; respectively).
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Table 1. Soil, topographic and land use characteristics of each study site. Average transmissiv-
ity values were derived from SSURGO soil data (USDA-NRCS, 2009).

Site Average (range) Slope (mm−1) Area (ha) Average Transmissivity (µmd−1) Primary Land Use

1 5.29 (0.004–71.31) 5.6 0.9 Corn and Soybean
2 6.34 (0.016–46.35) 2.3 0.4 Orchard and Grass
3 4.81 (0.001–105.10) 10.2 1.6 Corn, Soybean and Grass
4 6.63 (0.014–44.16) 6.0 2.8 Corn, Soybean and Grass
5 6.56 (0.305–22.018) 2.3 0.6 Grass/Fallow
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Table 2. Summary of TDR measurements at each field site. VWC represents volumetric water
content. Site numbers correspond with Fig. 1.

Site Sampling Date 7-Day Antecedent Rainfall (mm) Mean VWC (%) SD (%) Sample Size

1 12 Sept 2012 1.23 25.3 7 22
21 Sep 2012 1.61 32.7 7.4 22
26 Oct 2012 1.68 39.1 7.9 22
2 Nov 2012 1.6 43.9 7.1 22
8 Nov 2012 0.47 41.7 7.4 27
15 Nov 2012 0.69 44.9 7 27
30 Nov 2012 0 39.6 7.8 27

2 3 Oct 2012 0.66 36.6 9.7 13
2 Nov 2012 1.6 45.3 8.6 20
12 Nov 2012 0.04 38.2 9 20
20 Nov 2012 0.68 40.2 9.1 26
28 Nov 2012 0 39.3 7.6 23

3 21 Aug 2012 1.64 23.1 7.3 25
5 Sep 2012 0 31.8 9.6 31
14 Sep 2012 0.74 20.7 8.8 19
17 Oct 2012 0.24 34.2 9.9 36
31 Oct 2012 2.14 45 11.3 38
7 Jul 2012 0.74 43.5 10.5 40
15 Nov 2012 0.69 43.9 8.9 50
28 Nov 2012 0 40.8 9 46

4 23 Aug 2012 0.1 26.2 11.6 27
6 Sep 2012 0.45 24.2 13.6 25
19 Sep 2012 1.34 36.4 10.1 35
24 Oct 2012 1.76 41.6 7.9 16
2 Nov 2012 1.5 40.5 7.9 36
9 Nov 2012 0.13 38.3 8.9 54
16 Nov 2012 0.78 40.8 9.8 51
30 Nov 2012 0.04 39.1 11 50

5 19 Oct 2012 0.24 38 6.2 35
31 Oct 2012 2.14 42.4 7.7 38
7 Nov 2012 0.74 42.7 9.3 22
14 Nov 2012 0.69 44.6 8.6 44
30 Nov 2012 0 39.8 8.3 46
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Table 3. Example of TWI differences in pairwise comparisons.

TWI Source Type Cell Size Slope Flow Accum Smoothing

1 LIDAR 3 m LSFP D8 Filtered
2 LIDAR 3 m LSFP D8 Un-Filtered
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Table 4. Summary of the cases where the TI performed better than the STI in the LiDAR
dataset. In the filtered column, “Y” stands for yes and “N” stands for no.

SourceData CellSize Slope FlowAccum Filtered AICSTI AICTI ∆AIC

LIDAR 10 MTS BR Y 6048.2 6045.6 −2.6
LIDAR 10 DSI-2m BR Y 6050.4 6041.7 −8.7
LIDAR 10 SDP BR Y 6062.9 6057.5 −5.4
LIDAR 10 LSFP BR Y 6064.0 6057.3 −6.6
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Table 5. Top ten best performing TWIs from the mixed effects analysis for the LiDAR and USGS
datasets.

# TI form Cell Size Slope Flow Accum Filtered AIC ∆AIC AICw E-Ratio

LiDAR

1a STI 3 m MTS MD∞ N 5916.8 0 0.39 1
2a STI 3 m MTS D∞ N 5918 1.2 0.22 1.78
3a STI 3 m LSFP MD∞ N 5918.7 1.9 0.15 2.57
4a STI 3 m SDP MD∞ N 5918.9 2.1 0.14 2.83
5a STI 3 m SDP D∞ N 5921.8 5 0.03 12.28
6a STI 3 m LSFP D∞ N 5921.9 5 0.03 12.34
7a STI 3 m MTS D∞ Y 5924.3 7.4 0.01 41.45
8a STI 3 m DSI-2m MD∞ N 5924.9 8.1 0.01 57.42
9a STI 3 m SDP MD N 5925.5 8.7 0.01 75.8
10a STI 3 m LSFP MD N 5925.5 8.7 0.01 75.9

USGS

1b STI 10 m DSI-5m D8 Y 6141.3 0 0.59 1
2b STI 10 m DSI-5m Rho8 Y 6142.7 1.4 0.3 1.97
3b STI 10 m DSI-5m BR Y 6147 5.7 0.03 19.67
4b STI 10 m DSI-5m MD Y 6148.3 7 0.02 29.5
5b STI 10 m DSI-2m D8 Y 6148.6 7.3 0.02 29.5
6b STI 10 m DSI-5m MD∞ Y 6150.2 8.8 0.01 59
7b STI 10 m DSI-5m D∞ Y 6150.3 9 0.01 59
8b STI 10 m DSI-2m Rho8 Y 6150.6 9.3 0.01 59
9b STI 10 m DSI-2m BR Y 6150.7 9.4 0.01 59
10b STI 10 m DSI-10m D8 Y 6151.6 10.2 0 –
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Fig. 1. Study site locations (red stars). Watershed boundaries are depicted by red polygons
(USGS, 12-digit hydrologic unit codes).
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Fig. 2. Violin plot of AIC values of the LIDAR and USGS DEM source groups. The median
and mean are indicated by the white dots and red diamonds, respectively; the interquartile
range is indicated by the thick vertical bar, the density distribution is shown as the symmetrical
(mirrored) grey area and highlights the peaks and valleys of the AIC distribution.
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Fig. 3. Violin plot of AIC values vs. TI form for the LIDAR and USGS datasets. Mean and
median values are depicted as red diamonds and white dots, respectively.
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Fig. 4. AIC values vs. grid cell size for the LiDAR dataset. Mean and median values are depicted
as red diamonds and white dots, respectively.
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Fig. 5. AIC values vs. flow direction algorithm for the LiDAR (light grey; 3 and 10 m) and USGS
(dark grey) datasets. Mean and median values are depicted as red diamonds and white dots,
respectively.
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Fig. 6. AIC distributions for each of the six test flow accumulation algorithms using LiDAR-
derived DEMs. Mean and median values are depicted as red diamonds and white dots, respec-
tively.
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Fig. 7. AIC values vs. flow accumulation algorithm for both the 3 m (light grey) and 10 m (dark
grey) LiDAR dataset.
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Fig. 8. AIC values vs. flow accumulation algorithm for the USGS dataset.
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Fig. 9. AIC values vs. flow accumulation algorithm for the filtered (light grey) and unfiltered
(dark grey) TWIs.
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Fig. 10. AIC values vs. smoothing for the LiDAR (light grey) and USGS (dark grey) TWIs.
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Fig. 11. Mean-normalized volumetric water content (%) vs. index value of the optimal TWI for
the LiDAR dataset. R2 values are shown in the lower right corner of each graph.
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Fig. 12. Mean-normalized volumetric water content (%) vs. index value of the optimal TWI for
the USGS dataset. R2 values are shown in the lower right corner of each graph.
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Fig. 13. (A) Spearman correlation coefficients vs. TWI. (B) Spearman correlation coefficients
vs. AIC values from all 432 mixed effect models.
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